An accurate and interpretable model for antimicrobial resistance in pathogenic Escherichia coli from livestock and companion animal species

  28 August 2023

Understanding the microbial genomic contributors to antimicrobial resistance (AMR) is essential for early detection of emerging AMR infections, a pressing global health threat in human and veterinary medicine. Here we used whole genome sequencing and antibiotic susceptibility test data from 980 disease causing Escherichia coli isolated from companion and farm animals to model AMR genotypes and phenotypes for 24 antibiotics. We determined the strength of genotype-to-phenotype relationships for 197 AMR genes with elastic net logistic regression. Model predictors were designed to evaluate different potential modes of AMR genotype translation into resistance phenotypes.

We conclude that an interpretable AMR prediction model can be used to accurately predict resistance phenotypes across multiple host species and reveal testable hypotheses about how the mechanism of resistance may vary across antibiotics within the same class and across animal hosts for the same antibiotic.

Further reading: PloS One
Author(s): Henri C Chung et al
Healthy Animals  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

LifeArc

Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre

INTERNATIONAL FEDERATION PHARMACEUTICAL MANUFACTURERS & ASSOCIATIONS





AMR NEWS

Every two weeks in your inbox

Because there should be one newsletter that brings together all One Health news related to antimicrobial resistance: AMR NEWS!

Subscribe

What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!

Keep me informed